Estimating Shadows with the Bright Channel Cue

نویسندگان

  • Alexandros Panagopoulos
  • Chaohui Wang
  • Dimitris Samaras
  • Nikos Paragios
چکیده

In this paper, we introduce a simple but efficient cue for the extraction of shadows from a single color image, the bright channel cue. We discuss its limitations and offer two methods to refine the bright channel: by computing confidence values for the cast shadows, based on a shadow-dependent feature, such as hue; and by combining the bright channel with illumination invariant representations of the original image in a flexible way using an MRF model. We present qualitative and quantitative results for shadow detection, as well as results in illumination estimation from shadows. Our results show that our method achieves satisfying results despite the simplicity of the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Color Image Analysis for Recognizing Shadows

Many existing computer vision modules assume that shadows in an image have been accounted for prior to their application. In spite of this, relatively little work has been done on recognizing shadows or on recognizing a single surface material when directly lit and in shadow. This is in part because shadows cannot be infallible recognized until a scene's lighting and geometry are known. However...

متن کامل

Single Image Dehazing Algorithm Based on Dark Channel Prior and Inverse Image

The sky regions of foggy image processed by all the existing conventional dehazing methods are degraded by color distortion and severe noise. This paper proposes an improved algorithm which combines dark channel prior and inverse image. We first invert the foggy image, and then estimate the transmission of the inverse image. At last, compared with the non-inversed transmission, the larger value...

متن کامل

Modeling and Estimating the Dimensions of Stable Alluvial Channels using Soft Calculations

In this research, soft computational models including multiple adaptive spline regression model (MARS) and data group classification model (GMDH) were used to estimate the geometric dimensions of stable alluvial channels including channel surface width (w), flow depth (h), and longitudinal slope (S) and the results of the developed models were compared with the multilayer neural network (MLP) m...

متن کامل

Comparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels

Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...

متن کامل

Removing car shadows in video images using entropy and Euclidean distance features

Detecting car motion in video frames is one of the key subjects in computer vision society. In recent years, different approaches have been proposed to address this issue. One of the main challenges of developed image processing systems for car detection is their shadows. Car shadows change the appearance of them in a way that they might seem stitched to other neighboring cars. This study aims ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010